
Othmar Gsenger <otti-ff@graz.funkfeuer.at>

Christian Pointner <equinox@chaos-at-home.org>

Friedrich Lobenstock <fl@fl.priv.at>

Authenticating packets in a
provider independent
network with IPSec-AH

mailto:equinox@chaos-at-home.org

Content

● Introduction

● Our Network

● IPsec and Anycast

● Implementation –
Firmware

● OLSR+BGP
Outlook

● The Big Picture

Introduction

● Free network as independent as
possible

● Hand out public IP addresses for
Internet access

● Support different upstream providers

● Protect against IP address high-jacking

Othmar Gsenger <otti-
ff@graz.funkfeuer.at>

IPsec and Anycast

Our Network

● One continuous wireless cloud

● multi-home to different upstream
providers

● provider independent (PI) address space
of public IP addresses

Routing

● BGP border routers announce the hole
public IP address range

● At each border router there is an OLSR
router, which announces the default
route

● No NAT or MASQUERADE

What's IPSec? - ESP

● Security extension
for Ipv4 and IPv6

● Adds an additional
header after the
IP header

Ethernet Header
IP Header
ESP Header
UDP Header
Payload
Authentification Tag

Ethernet Header
IP Header
UDP Header
Payload

Encapsulating Security Payload (ESP) encapsulates the
encrypted payload and adds an authentication tag

IPSec AH

Ethernet Header
IP Header
AH Header
UDP Header
Payload

Ethernet Header
IP Header
UDP Header
PayloadAuthentication Header (AH)

adds a cryptographic
checksum of the green
parts, but doesn't encrypt
the payload

IPSec tunnel mode?

Ethernet Header
IP Header
AH Header
UDP Header
Payload

Ethernet Header
IP Header
UDP Header
Payload

Transport mode

Ethernet Header
IP Header
AH Header
IP Header
UDP Header
Payload

Ethernet Header
IP Header
IP Header
UDP Header
Payload

Ipsec with IPIP tunnel
(Tunnel mode)

IPSec in tunnel mode is just using Ipsec with an IPIP tunnel

Ethernet Header
IP Header
AH Header
GRE Header
Ethernet Header
IP Header
UDP Header
Payload

Ethernet Header
IP Header
GRE HEADER
Ethernet Header
IP Header
UDP Header
Payload

Ipsec with GRE

Ethernet Header
IP Header
AH Header
UDP Header
Payload

Ethernet Header
IP Header
UDP Header
Payload

Ethernet Header
IP Header
AH Header
UDP Header
Payload

Ethernet Header
IP Header
UDP Header
Payload

Ethernet Header
IP Header
AH Header
UDP Header
Payload

olsr default route

router checks
AH

router checks
AH

Why this isn't working

● We want IPsec to add AH only when we
use the default route

● So we need a Security Association with
all hosts, but the hosts in our routing
table

Ethernet Header
IP Header
AH Header
UDP Header
Payload

Why this isn't working
What we want to do:

We

Host 1 on the internet

host 2 on the internet

router checks and
removes AH

Ethernet Header
IP Header
UDP Header
Payload

Ethernet Header
IP Header
UDP Header
Payload

only we and the boarder
gateway know the secret

Ethernet Header
IP Header
AH Header
UDP Header
Payload

Ethernet Header
IP Header
AH Header
UDP Header
Payload

Ethernet Header
IP Header
AH Header
UDP Header
Payload

Why this isn't working
What it looks like for IPsec

We

Host 1 on the internet

host 2 on the internet

both need to know the session key to
check the ah header

Ethernet Header
IP Header
UDP Header
Payload

Ethernet Header
IP Header
UDP Header
Payload

shortest route to 10.10.0.5

router checks AH
and removes IP
header

router checks AH
and removes IP header

Ethernet Header
IP Header
AH Header
IP Header
UDP Header
Payload

Ethernet Header
IP Header
AH Header
IP Header
UDP Header
Payload

Ethernet Header
IP Header
AH Header
IP Header
UDP Header
Payload HNA 10.10.0.5

HNA 10.10.0.5

Tunnel mode

Ping ...
IP 193.33.151.42 > 10.10.0.5: AH(spi=0x00000150,seq=0xc69): IP 193.33.151.42 >
129.27.3.16: ICMP echo request, id 36463, seq 0, length 64 (ipip-proto-4)

IP 10.10.0.5 > 193.33.151.42: AH(spi=0x00000150,seq=0x4a): IP 129.27.3.16 >
193.33.151.42: ICMP echo reply, id 36463, seq 0, length 64 (ipip-proto-4)

IP 193.33.151.42 > 10.10.0.5: AH(spi=0x00000150,seq=0xc6a): IP 193.33.151.42 >
129.27.3.16: ICMP echo request, id 36463, seq 256, length 64 (ipip-proto-4)

IP 10.10.0.5 > 193.33.151.42: AH(spi=0x00000150,seq=0x4b): IP 129.27.3.16 >
193.33.151.42: ICMP echo reply, id 36463, seq 256, length 64 (ipip-proto-4)

Difference to signed routing

● Protects internal
routing tables

● Asymmetric
Cryptography

● PKI

● Protects data sent
to the internet

● Symmetric
Cryptography

● Upstream Provider
creates keys

Signed Routing Authenticated Internet-Traffic

Possible attacks

● Inject data when
you are on the
route path

● Manipulate
routing table

Signed Routing Authenticated Internet-Traffic

Combine both if you can!

Provider neutrality
● It's possible that multiple upstream-

provider route their IP addresses into
the network and protect them

● Every provider may run one or multiple
border routers (with anycast IPs)

● Internal IP addressing stays valid and
may be done by someone else.

Anycast

● The border gateways have the same IP
address and announce it with OLSR HNA

● shorter route wins

Limits of Ipsec with anycast

● IPSec wasn't designed to allow anycast
host.

● Replay protection is done by sequence
numbers, but the anycast routers don't
know each others sequence counter

● so replay protection doesn't work

Limits of Ipsec with anycast

● IPsec doesn't define a key management,
but there is no anycast key
management in existence

● synchronization of keys can help, but
only for hot standby systems (not for
load balancing)

● so we have to use static keying

Links to further infomation

● building hot standby IPsec tunnels with
key management
– isakmpd
– sasyncd
– carp

● building real anycast tunnels
– http://www.anytun.org

Christian Pointner <equinox@chaos-at-
home.org>

Implementation -
Firmware

a story about penguins,
swans and turtles

ipsec on linux2.4

and linux2.6

openswan - ipsec on linux2.4
(openwrt white russian)

● consists of kernel module ond userspace
ipsec tool

● ipsec interface device

● configuration through /etc/ipsec.conf

Problem

● ipsec device is bound to existing
interface

● bypasses kernel routing table

Solution

● bind ipsec device to a dummy ipip
tunnel

● trick ipsec to use routing table,
therefore ip tunnel gets bypassed

configuration
ip tunnel add dummy0 mode ipip local 127.0.0.1 remote 127.0.0.1
ifconfig dummy0 193.33.151.42 up

config setup
 interfaces="ipsec0=dummy0"
 pluto=no
conn ff
 type=tunnel
 left=193.33.151.42
 right=10.10.0.5
 rightsubnet=0.0.0.0/0
 auto=manual
 auth=ah
 ah=hmac-sha1-96
 ahkey=0x0000000000000000000000000000000000000023
 spi=0x150
 authby=never
 ahreplay_window=0

/etc/ipsec.conf

kame-tools – ipsec on
linux2.6

● consists of userspace tool setkey and
ike-daemon racoon

● manipulate the kernel SAD and SPD
through pf_key

configuration
/etc/ipsec-tools.conf (debian)

add 10.12.0.170 10.12.1.155 esp 0x123 -r 0
 -E aes-cbc 0x00000000000000000000000000000001
 -A hmac-sha1 0x0000000000000000000000000000000000000003;

add 10.12.1.155 10.12.0.170 esp 0x123 -r 0
 -E aes-cbc 0x00000000000000000000000000000002
 -A hmac-sha1 0x0000000000000000000000000000000000000004;

Security policies

spdadd 10.12.1.155 10.12.0.170 4 -P in ipsec
 esp/transport//require;

spdadd 10.12.0.170 10.12.1.155 4 -P out ipsec
 esp/transport//require;

IPSec on Freifunk Firmware

● kernel2.4 -> openswan

● dummy ipip device

● own package consisting of some scripts

Friedrich Lobenstock <fl@fl.priv.at>

OLSR+BGP4
Outlook

OLSR+BGP4 Outlook

● Why BGP4 (Border Gateway Protocol 4)?
● Why OLSR (Optimized Link State

Routing)?
● Why get BGP and OLSR talking?
● OLSR to BGP protocol translation
● Problems
● The Future

Why BGP4 (Border Gateway
Protocol 4)

● The standard routing protocol on the
Internet

● BGP4 is essential when multi-homing
with a PI(provider independent) address
space to more than one upstream
provider

● We are now basically an ISP providing
public IP addresses to our participants

Why OLSR (Optimized Link
State Routing)?

● A routing protocol optimized for ad-hoc
wireless LANs - the currently defacto
standard

● Currently used because of support in
Freifunk firmware for commodity
wireless routers

● In the future OSLR might be replaced by
other protocols like BATMAN

Why get BGP and OLSR
talking?

● Border Gateways do not necessarily talk
OSLR (i.e. Cisco Routers), but speak BGP

● OLSR announces the gateways anycast
IP but doesn't know anything about the
conditions of upstreams - this info is in
BGP

● Status of eBGP session needs to
influence announcement of anycast IP in
OLSR

OLSR to BGP protocol
translation

● Each Border Gateway needs a
companion router running OLSR which is
only stable on MIPS platform

● Current plan was to get OLSRD talking
to the popular QUAGGA routing daemon

● olsrd_quagga plug-in available for
OLSRD which looked like a promising
starting point

Problems and Pitfalls

● olsrd_quagga plug-in communication
with Quagga had to be fixed in our local
Freifunk firmware version

● Nonetheless OLSRD just crashes with
this plug-in loaded and debugging led
nowhere

● Currently no conditional routing
announcements implemented in OLSRD

The Future

● Get olsr_quagga plug-in working

● Implement conditional HNA
announcements in OLSRD based on
routing info from BGP(QUAGGA)

● Motivate other projects like BATMAN to
support such a communication with
QUAGGA

The Big Picture
● Multi-homed with

public IP
addresses

● Network provider
independet

● IP addresses are
protected

● Network stays
independent

Questions?

